1	Extracellular vesicles microRNA analysis in type 1 autoimmune pancreatitis: increased expression of
2	microRNA-21
3	Short title: miR-21 and type 1 AIP
4	Koh Nakamaru ^a , Takashi Tomiyama ^{a*} , Sanshiro Kobayashi ^a , Manami Ikemune ^a , Satoshi Tsukuda ^a ,
5	Takashi Ito ^a , Toshihiro Tanaka ^a , Takashi Yamaguchi ^a , Yugo Ando ^a , Tsukasa Ikeura ^a , Toshiro Fukui ^a ,
6	Akiyoshi Nishio ^a , Makoto Takaoka ^a , Kazushige Uchida ^b , Patrick S.C. Leung ^c , M.E. Gershwin ^c , Kazuichi
7	Okazaki ^a
8	^a Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical
9	University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
10	^b Division of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu Oko-
11	cho, Nankoku, Kochi, 783-8505, Japan
12	^c Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451
13	Health Sciences Drive Suite 6510, Davis, CA, 95616, USA
14	*Corresponding Author
15	Takashi Tomiyama, M.D. Ph.D. tomiyata@hirakata.kmu.ac.jp
16	4343 words

1 Author Contributions

2	Koh Nakamaru and Takashi	Tomiyama designe	ed the study and wro	rote the initial draft of th	he manuscript.
---	--------------------------	------------------	----------------------	------------------------------	----------------

- 3 Sanshiro Kobayashi, Manami Ikemune, Satoshi Tsukuda, Takashi Ito, Toshihiro Tanaka, Kazushige Uchida,
- 4 Takashi Yamaguchi, Yugo Ando, Tsukasa Ikeura, Toshiro Fukui, Akiyoshi Nishio, Makoto Takaoka, Patrick
- 5 S.C. Leung, M.E. Gershwin, and Kazuichi Okazaki contributed to analysis and interpretation of data, and
- 6 assisted in the preparation of the manuscript. All other authors have contributed to data collection and
- 7 interpretation, and critically reviewed the manuscript.
- 8

1	Abstract
2	Background
3	The molecular basis of type I autoimmune pancreatitis (AIP) remains unclear. Recent attention on the role
4	of extracellular vesicles microRNA (EV miRNA) in immune homeostasis has prompted us to perform an
5	extensive miRNA screening of serum-derived EV in type 1 AIP patients.
6	Methods
7	Serum EV miRNA expression was analyzed using microarrays in type 1 AIP patients ($n = 10$) and healthy
8	adults (n = 10). Differences in signals >3 times or $< 1/3$ represented significant differences in expression.
9	Results
10	The signals of eight miRNAs (miR-659-3p, -27a-3p, -99a-5p, -21-5p, -205-5p, -100-5p -29c-3p, and -
11	125b-1-3p) were significantly higher and two miRNAs (miR-4252 and -5004-5p) were significantly
12	lower in type 1 AIP patients than in healthy adults. Quantitative reverse-transcription polymerase chain
13	reaction revealed that EV miR-21-5p was significantly upregulated in type 1 AIP patients compared with
14	that in healthy adults ($P = 0.04$). In situ hybridization study of miR-21-5p using tissue specimens revealed
15	high miR-21 expression in various cell populations such as pancreatic acinar, and inflammatory cells in
16	the pancreas of type 1 AIP patients.

1 Conclusions

2 Circulating extracellular vesicles exhibit altered patterns of miRNA expression with elevate	d miRNA-21-
--	-------------

- 3 5p in type 1 AIP patients compared with that in healthy adults. Further, miRNA-21-5p was highly
- 4 expressed in various cell populations of the pancreas in type 1 AIP patients. Our data suggests that
- 5 miRNA-21-5p levels may be involved in the regulation of effector pathways in the pathophysiology of
- 6 AIP and potentially a disease marker for monitoring disease interventions.
- 7
- 8

1 Keywords

2

2	microarray; RT-PCR; in situ hybridization; inflammatory disease
3	
4	Abbreviations: EV, extracellular vesicle; AIP, autoimmune pancreatitis; HC, healthy control; CP, chronic
5	pancreatitis; RNA, ribonucleic acid; miR, micro RNA; RT-PCR, reverse transcription polymerase chain
6	reaction; rpm, rotations per minute; Cel-miR-39, Caenorhabditis elegans miRNA-39; TAPA-1, Target of

7 the Antiproliferative Antibody 1; PBS, phosphate buffered saline; TBS, Tris buffered saline; WBC, white

8 blood cell; IgG, immunoglobulin G; CRP, C-reactive protein; P-Amy, pancreatic Amylase; CEA,

9 carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; IL-4, Interleukin-4; Gata3, GATA

10 binding protein 3; PDCD4, Programmed cell death 4; NF-κB, nuclear factor κB; ISH, in situ

11 hybridization; PTEN, Phosphatase and Tensin Homolog Deleted from Chromosome 10; FOXO1,

12 Forkhead box protein O1; N/A, not available

13

14

1 Introduction

2	Extracellular vesicles (EVs) are secreted by various cell populations into body fluids such as serum,
3	urine, airway secretions, and breast milk ¹⁻⁶ . These vesicles contain nucleic acids, including microRNA,
4	and proteins derived from the cells from which they were secreted. EVs engage in cell-to-cell
5	communication by transporting their contents to recipient cells ^{1, 2} . EVs not only maintain immune
6	homeostasis ³⁻⁶ but are also involved in the pathophysiology of several autoimmune diseases ⁷⁻¹¹ .
7	
8	Type 1 autoimmune pancreatitis (AIP) is a distinctive type of pancreatitis characterized by the diffuse
9	irregular narrowing of the main pancreatic duct, sausage-like diffuse swelling of the pancreas, and
10	immune-cell infiltration with high serum titers of IgG and IgG4 ¹² . It has been more than three decades
11	since the initial case reports of chronic pancreatitis with hypergammaglobulinemia ¹³ , and subsequently
12	the specific diagnosis of AIP was described by Yoshida et al ¹⁴ . More recently, AIP has been classified
13	into two subtypes: type 1 AIP, lymphoplasmacytic sclerosing pancreatitis (LPSP), and type 2 AIP or
14	idiopathic duct-centric chronic pancreatitis (IDCP) with granulocytic epithelial lesions (GEL) ¹⁵ . Type 1
15	AIP is regarded as a pancreatic manifestation of IgG4-related disease (IgG4-RD) ¹⁶ . The
16	fibroinflammatory processes underlying type 1 AIP respond well to steroids and/or immunosuppressive

1	agents ¹⁷ ; therefore, an abnormal immune response is considered the core for the pathogenesis of
2	disease ¹⁸ . Although studies have indicated that the loss of tolerance via the adaptive immune system ¹⁹
3	and epigenetic changes ²⁰ contribute to the development of AIP, there are still major void in the
4	understanding of the effector mechanisms underlying this uncommon autoimmune disease . To address
5	this, we performed a comparative analysis of a well-defined cohort with AIP compared to age and sex-
6	matched controls to examine miRNA expression in circulating EVs.
7	
8	Methods
9	Clinical samples
10	This study included patients with type 1 AIP ($n = 23$) diagnosed according to the international consensus
11	diagnostic criteria ¹⁵ , patients with chronic pancreatitis (CPs) ($n = 23$) diagnosed according to Japanese
12	clinical diagnostic criteria 21 , and age and sex-matched healthy controls (HCs) (n = 23). The clinical
13	characteristics of all subjects are listed in Table 1. All study subjects provided written informed consent
14	
	approved by the ethics committee of Kansai Medical University for this study. AIP patients have not been
15	approved by the ethics committee of Kansai Medical University for this studyAIP patients have not been treated with any steroids or immunosuppressive agents before any assays. Ten subjects from each three

1	were subjected to RT-PCR. The surgical specimens of type 1 AIP patients $(n=3)$ and chronic pancreatitis
2	patients (n=3) were used for in situ hybridization. Surgical specimens in normal lesion of epidermoid cyst
3	was study in parallel as healthy control (n=3).
4	Serum EV isolation.
5	EVs were isolated using the ExoQuick precipitation kit, according to the manufacturer's instructions
6	(System Biosciences, CA, USA). Briefly, 500 μ L of serum was mixed with ExoQuick and incubated for
7	30 min at 4°C. After centrifuging at 13,000 rpm for 4 min and removing the supernatant, the EV pellet
8	was stored at -80°C until use for further analysis. The isolated EVs were characterized by analysis of
9	CD9, CD63 ,CD81 and GM130 expression using western blotting (Fig. 1).
10	miRNA microarray analysis
11	Samples from patients with type 1 AIP, HC, and CP (n=10 of each) were used for microarray analysis,
12	RNA extraction, and miRNA expression profiling. Total RNA was extracted from liquid samples using
13	3D-Gene RNA extraction reagent (Toray Industries Inc., Tokyo, Japan) and the miRNeasy mini kit
14	(QIAGEN, Germany) according to the manufacturer's instructions. Extracted total RNA was labeled
15	using the 3D-Gene miRNA labeling kit (Toray Industries Inc., Tokyo, Japan). Labeled RNAs were
16	hybridized onto the 3D-Gene Human miRNA Oligo chip (Toray Industries Inc., Tokyo, Japan). The

1	annotation and oligonucleotide sequences of the probes were confirmed using the miRBase
2	(http://microrna.sanger.ac.uk/sequences/). After cycles of stringent washes, fluorescence signals were
3	scanned using the 3D-Gene Scanner (Toray Industries Inc., Tokyo, Japan) and analyzed using 3D-Gene
4	Extraction software (Toray Industries Inc., Tokyo, Japan). The relative expression level of a given miRNA
5	was calculated by comparing the signal intensities of the valid spots for all microarray experiments. The
6	data were globally normalized per array, such that the median of the signal intensity was adjusted to 25.
7	Quantitative reverse transcription polymerase chain reaction (qRT-PCR)
8	EV RNAs were quantified in an additional 10 samples, each, of type 1 AIP, HC, and CP. Total RNAs
9	were purified using the miRNeasy Serum/Plasma Kit (Qiagen, Germany). Because a standard internal
10	control miRNA for EVs is not available, Caenorhabditis elegans miRNA (Cel-miR-39) was used as a
11	standard control ²² . EVs were resuspended in 200 μ l of PBS and thereafter 1,000 μ l of QIAzol Lysis
12	Reagent was added, followed by chloroform extraction and ethanol precipitation. The total RNAs were
13	measured using the NanoDrop 2000 and and Cel-miR-39 (5.6x108 copies) was added. Reverse
14	transcription reaction was performed using the miScript II RT kit (Qiagen, Germany). The miRNAs were
15	quantified by real-time PCR using the miScript SYBER Green PCR kit (Qiagen, Germany) and the
16	Rotor-Gene Q2 system (Qiagen, Germany). The expression of EV miRNA was normalized to that of cel-

1	miR-39 and determined using the $2^{-\Delta\Delta Ct}$ method. The primer sequences used were as follows: 5'-
2	UCACCGGGUGUAAAUCAGCUUG -3'(Cel-miR-39), 5'- UAGCUUAUCAGACUGAUGUUGA -
3	3'(miR-21-5p), 5'- UUCACAGUGGCUAAGUUCCGC -3' (miR-27a-3p), 5'-
4	UAGCACCAUUUGAAAUCGGUUA -3' (miR-29c-3p), 5'- AACCCGUAGAUCCGAUCUUGUG -3'
5	(miR-99a-5p), 5'- AACCCGUAGAUCCGAACUUGUG -3' (miR-100-5p), 5'-
6	ACGGGUUAGGCUCUUGGGAGCU -3' (miR-125b-1-3p), 5'- UCCUUCAUUCCACCGGAGUCUG -
7	3' (miR-205-5p), 5'- CUUGGUUCAGGGAGGGUCCCCA -3' (miR-659-3p), 5'-
8	GGCCACUGAGUCAGCACCA -3' (miR-4252) and 5'- UGAGGACAGGGCAAAUUCACGA -3' (miR-
9	5004-5p) (miScript Primer Assays(Qiagen, Germany)).
9 10	5004-5p) (miScript Primer Assays(Qiagen, Germany)). In situ hybridization
9 10 11	 5004-5p) (miScript Primer Assays(Qiagen, Germany)). <i>In situ hybridization</i> Tissue sections (6 μm) were de-paraffined with xylene and rehydrated by an ethanol series and PBS. The
9 10 11 12	 5004-5p) (miScript Primer Assays(Qiagen, Germany)). <i>In situ hybridization</i> Tissue sections (6 μm) were de-paraffined with xylene and rehydrated by an ethanol series and PBS. The sections were fixed with 10% formalin in PBS for 30 min at 37°C and washed with distilled water.
9 10 11 12 13	 5004-5p) (miScript Primer Assays(Qiagen, Germany)). <i>In situ hybridization</i> Tissue sections (6 μm) were de-paraffined with xylene and rehydrated by an ethanol series and PBS. The sections were fixed with 10% formalin in PBS for 30 min at 37°C and washed with distilled water. Thereafter, the sections were placed in 0.2 M HCl for 10 min at 37°C, washed with PBS, treated with 4
9 10 11 12 13 14	5004-5p) (miScript Primer Assays(Qiagen, Germany)). <i>In situ hybridization</i> Tissue sections (6 μm) were de-paraffined with xylene and rehydrated by an ethanol series and PBS. The sections were fixed with 10% formalin in PBS for 30 min at 37°C and washed with distilled water. Thereafter, the sections were placed in 0.2 M HCl for 10 min at 37°C, washed with PBS, treated with 4 μg/ml Proteinase K in PBS for 10 min at 37°C, and washed with PBS again. Then, the sections were heat-
9 10 11 12 13 14 15	5004-5p) (miScript Primer Assays(Qiagen, Germany)). <i>In situ hybridization</i> Tissue sections (6 μm) were de-paraffined with xylene and rehydrated by an ethanol series and PBS. The sections were fixed with 10% formalin in PBS for 30 min at 37°C and washed with distilled water. Thereafter, the sections were placed in 0.2 M HCl for 10 min at 37°C, washed with PBS, treated with 4 μg/ml Proteinase K in PBS for 10 min at 37°C, and washed with PBS again. Then, the sections were heat- treated with PBS for 5 min at 80°C, cooled immediately in cold PBS, and washed with 1x Standard Saline

1	probe diluent (Genostaff Co., Ltd.) for 16 h at 60°C. The hybridization sequences were as follows: 5'-
2	TCAACATCAGTCTGATAAGCTA-3' (miR-21-5p) and 5'-GTGTAACACGTCTATACGCCCA-3'
3	(scramble) (Qiagen, Germany). After hybridization, the sections were washed 3 times with 50%
4	formamide in 2x Standard Saline Citrate for 30 min at 50°C and washed 5 times in TBST (0.1% Tween
5	20 in TBS) at room temperature. After treatment with 1x blocking reagent (Genostaff Co., Ltd.) for 15
6	min at room temperature, the sections were incubated with anti-DIG AP conjugate (Roche Diagnostics)
7	diluted 1:2000 with x50 blocking reagent (Genostaff Co., Ltd.) in TBST for 1 h at room temperature.
8	Next, the sections were washed twice with TBST and then incubated in 100 mM NaCl, 50 mM MgCl2,
9	0.1% Tween 20, and 100 mM Tris-HCl (pH 9.5). Coloring reactions were performed with NBT/BCIP
10	solution (Sigma-Aldrich) overnight and then the sections were washed with PBS. The sections were
11	mounted with G-Mount (Genostaff Co., Ltd.).
12	Statistical analysis
13	Mann–Whitney U test and Pearson's correlation test were used for data analysis; P values < 0.05 were
14	considered to represent statistically significant differences.
15	
16	Results

1 EV miRNA expression profiles

2	We analyzed EVs from patients with type 1 AIP and HCs using microarray analysis. In total, 165
3	miRNAs were found to be differentially expressed in patients with type 1 AIP relative to those in HCs.
4	Further, 132 miRNAs were upregulated and 33 were downregulated in type 1 AIP patients compared with
5	those in HCs, respectively (Fig. 2). As shown in Table 2, 8 miRNAs (miR-659-3p, -27a-3p, -99a-5p, -21-
6	5p, -205-5p, -100-5p, -29c-3p, and -125b-1-3p) were significantly upregulated (>3-fold) and 2 miRNAs
7	(miR-4252 and -5004-5p) were significantly downregulated (<1/3 or lower) in type 1 AIP patients when
8	compared with HCs. These tendencies were found between AIPs and CPs but not between CPs and HCs
9	(Table2). Microarray expression profiling is available on NCBI's GEO
10	(<u>https://www.ncbi.nlm.nih.gov/geo/</u>); the data accession number, GSE128508.
11	Quantitative evaluation of EV miRNA expression level by RT-PCR
12	qRT-PCR was used to verify the data obtained from microarray analysis. The relative expression levels of
13	10 miRNAs were analyzed using the miScript SYBER Green PCR kit and normalized to those of spike-in
14	cel-miR-39 (Fig. 3). The expression level of miR-21-5p was significantly higher in type 1 AIP patients
15	than in HCs (P=0.04) and tended to be higher in type 1 AIP patients than in CP patients (P=0.05). The
16	miR-27a-3p and miR-100-5p expression level in type 1 AIP patients was higher than that in CP patients

1	(miR-27a-3p; P=0.58, miR-100-5p; P=0.21) or HCs (miR-27a-3p; P=0.48, miR-100-5p; P=0.19),
2	respectively; however, the difference was not statistically significant. There was no significant difference
3	in the expression levels of miR-29c-3p between type 1 AIP, CP, and HCs (P= 0.21; type 1 AIP vs CPs)
4	(P=0.28; type 1 AIP vs HCs). We were unable to obtain normal amplification curves for miR-659-3p,
5	miR-99a-5p, miR-205-5p, miR-100-5p, miR-125b-1-3p, miR-4252, and miR-5004-5p.
6	Relationship between miR-21 expression level and clinical features
7	There were no positive correlation between miR-21-5p and clinical data on WBC, IgG, IgG4, IgE, CRP,
8	P-Amy, CEA, and CA19-9 (data not shown).
9	Diffuse pancreatic distribution of miR-21 in type 1 AIP
9 10	<i>Diffuse pancreatic distribution of miR-21 in type 1 AIP</i> The high expression of miR-21 in circulating EVs of type 1 AIP patients prompted us to examine miR-21
9 10 11	<i>Diffuse pancreatic distribution of miR-21 in type 1 AIP</i> The high expression of miR-21 in circulating EVs of type 1 AIP patients prompted us to examine miR-21 expression in the pancreas of type 1 AIP patients by in situ hybridization (ISH) using resected specimen
9 10 11 12	Diffuse pancreatic distribution of miR-21 in type 1 AIP The high expression of miR-21 in circulating EVs of type 1 AIP patients prompted us to examine miR-21 expression in the pancreas of type 1 AIP patients by in situ hybridization (ISH) using resected specimen of type 1 AIP patients. ISH revealed that the expression of miR-21 in pancreatic duct epithelium was
9 10 11 12 13	Diffuse pancreatic distribution of miR-21 in type 1 AIP The high expression of miR-21 in circulating EVs of type 1 AIP patients prompted us to examine miR-21 expression in the pancreas of type 1 AIP patients by in situ hybridization (ISH) using resected specimen of type 1 AIP patients. ISH revealed that the expression of miR-21 in pancreatic duct epithelium was similar between HCs, type 1 AIP and CP patients (Fig. 4A). However, miR-21 was highly expressed in
9 10 11 12 13 14	Diffuse pancreatic distribution of miR-21 in type 1 AIP The high expression of miR-21 in circulating EVs of type 1 AIP patients prompted us to examine miR-21 expression in the pancreas of type 1 AIP patients by in situ hybridization (ISH) using resected specimen of type 1 AIP patients. ISH revealed that the expression of miR-21 in pancreatic duct epithelium was similar between HCs, type 1 AIP and CP patients (Fig. 4A). However, miR-21 was highly expressed in the pancreatic acinar cells (Fig. 4B) in type 1 AIP patients but not HCs. Interestingly, the expression of
 9 10 11 12 13 14 15 	Diffuse pancreatic distribution of miR-21 in type 1 AIP The high expression of miR-21 in circulating EVs of type 1 AIP patients prompted us to examine miR-21 expression in the pancreas of type 1 AIP patients by in situ hybridization (ISH) using resected specimen of type 1 AIP patients. ISH revealed that the expression of miR-21 in pancreatic duct epithelium was similar between HCs, type 1 AIP and CP patients (Fig. 4A). However, miR-21 was highly expressed in the pancreatic acinar cells (Fig. 4B) in type 1 AIP patients but not HCs. Interestingly, the expression of miR-21 at pancreatic acinar cells and inflammatory cells was similar in both AIP and CP patients (Figure

higher in AIP patients than that in CP patients (Figure 4D). Hematoxylin and eosin staining of serial
 section revealed that inflammatory cells in type 1 AIP specimens were mainly consist of lymphocytes
 characterized by large nucleus and small cytosol (Fig. 4C). The expression patterns of miR-21 in HCs,
 AIP and CP patients are summarized in Table 3.

1 Discussion

2	Extracellular vesicles play vital roles in the intercellular regulation of various biological processes ^{1, 2, 23} .
3	miRNA, which functions in the regulation the gene expression at the post-translational level, is one of the
4	key constituents of EVs ²⁴ . Alterations in miRNA expressions are involved in the initiation or modulation
5	of multiple human diseases ²⁵⁻²⁸ .
6	
7	In this study, we demonstrated an altered pattern of EV miRNA population in AIP, with elevation of
8	miR-21-5p in AIP when compared with HCs. Furthermore, ubiquitous high expression miR-21 is evident
9	in pancreas of AIP patients including pancreatic ducts, acinar cells, and inflammatory cells. miR-
10	21 expression is also elevated in acinar cells of mice with acute pancreatitis and the expression level
11	correlates with the severity of disease ²⁹ . In mice with chronic pancreatitis, miR-21 are exported in
12	pancreatic stellate cells derived EV ³⁰ . It is well known that aberrant expression of miR-21 in pancreatic
13	ductal adenocarcinoma cells contribute to tumor progression and refractoriness leading to poor prognosis
14	^{31, 32} . In pancreatic duct, however, our findings showed that miR-21 expression was also detected in non-
15	pathogenic pancreata. Previous microarray study reported that miR-21 expression was approximately 3-
16	fold higher in pancreatic cancer cells than in normal pancreas ³³ , implying that normal pancreatic ductal

1	cells modestly but constitutively express miR-21. Thus, we speculate that high expression of miR-21 in
2	circulating EVs of type 1 AIP is not due to invariable expression of miR-21 at pancreatic ductal epithelial
3	cells. Indeed, our data indicated that miR-21 was highly expressed in acinar cells and inflammatory sites
4	but not in non-pathogenic pancreata. Alcoholic chronic pancreatitis is featured by progressive destruction
5	of pancreatic parenchyma with fibrosis while inflammatory cell infiltration is generally sparse ³⁴ . In
6	contrast, type 1 AIP is histologically accompanied with a dense inflammatory cell infiltration
7	denominated as lymphoplasmacytic sclerosing pancreatitis ³⁵ . Although miR-21 expressing patterns of
8	inflammatory cells were comparable between type 1 AIPs and CPs, the number of inflammatory cell in
9	pancreatic tissues of type 1 AIP was enormous. Taken together, our findings suggest that high expression
10	of miR-21 in circulating EVs was the consequence of over expression of miR-21 at inflammatory cells in
11	type 1 AIP. It is of interest to note that serum EV mir-21-5p was recently reported to be three fold higher
12	in diabetic children than healthy children ³⁶ .
13	
14	It is unlikely that the pathophysiology of type 1 AIP involves only a single specific mechanism ^{18-20, 37} .
15	Both Th1 and Th2 cells are differentiated from CD4+ naïve T cells, which are regulated by cytokine.
16	Earlier work described a predominance of Th2 cytokines in Type 1 AIP, including IL-4, IL-5 and IL-13 ³⁸ ,

1	indicating that Th2 immune response plays a key role in the progression of type 1 AIP, although the
2	underlying mechanism of Th2 polarization in type 1 AIP has not been fully elucidated. miR-21 promotes
3	Th2 differentiation from Th0 and up-regulates Th2-related genes such as Gata3 and Il4 ³⁹ . Programmed
4	cell death 4 (Pdcd4), which is one of the miR-21 targets, induces activation of nuclear factor κB (NF- κB)
5	and suppresses IL-10 ⁴⁰ . Moreover, miR-21 targets suppress intrinsic IL-12 secretion by dendritic cells ⁴¹ .
6	These signal and cytokine regulations together thereby can enhance Th2/Th1 ratio in type 1 AIP. In
7	chronic pancreatitis, however, EV miR-21 was not elevated compared with its level in type 1 AIP, while a
8	high expression was found in pancreatic tissues in our study. This discrepancy might be explained by the
9	difference in the pathophysiology between type 1 AIP and chronic pancreatitis. Pathophysiology of type 1
10	AIP is characterized by lymphoplasmacytic sclerosing pancreatitis (LPSP) with the dominant infiltrating
11	inflammatory cells being plasmacytes and CD4+ helper T cells. However, in chronic pancreatitis, cell-
12	mediated cytotoxicity by CD8+ cytotoxic T cells and perforin-expressing CD56+ cells play an important
13	role in the pathogenesis of alcoholic chronic pancreatitis although the populations of CD4+ T and CD8+
14	T cells are almost equivalent ⁴² . Therefore, we speculate that the high expression of miR-21 in tissues, as
15	well as the resulting inflammatory milieu of the pancreas, is not disease-specific as it is caused by all
16	pancreatitis types, including type 1 AIP and CP. However, the high miR-21 expression in type 1 AIP

1	probably participates in the crosstalk between EVs in tissue and the periphery as miR-21 is also highly
2	expressed in circulating EVs, which together account for the Th2 predominance in type 1 AIP.
3	
4	Pancreatic cancer is one of the most lethal malignant neoplasms with poor prognosis because most
5	patients are not indicated for surgery at diagnosis. Thus, a relevant biomarker has been long desired.
6	miR-21 is one of the most representative oncomiRs that have been frequently reported in various
7	malignant diseases ⁴³⁻⁴⁶ including adenosquamous carcinoma of the pancreas ⁴⁷ and pancreatic ductal
8	adenocarcinoma ⁴⁸ . In pancreatic cancer, miR-21 expression is not only locally upregulated in the
9	pancreatic tumor site ⁴⁹ but also in the periphery ⁵⁰ . Studies have suggested that peripheral miR-21 as a
10	novel candidate predictor not only for diagnosis ⁴⁸ but for prognosis ⁵¹ and chemosensitivity ⁵² .
11	Carcinogenesis by miR-21 is orchestrated by targeting of tumor suppressors, cell cycle regulators, and
12	cellular apoptosis proteins such as PTEN, PDCD4, Sprouty, FOXO1, and SMAD7 ⁵³ . In our study, miR-
13	21 expression was diffusely detected in the pancreatic tissue of both type 1 AIP and CP patients, while a
14	high expression of miR-21 in circulating EVs was detected in only type 1 AIP patients. Chronic
15	pancreatitis is risk factor of pancreatic cancer ⁵⁴ . Interestingly, in addition to its association with
16	pancreatic cancer, type 1 AIP has also been reported in patients with other cancer types ^{55, 56} . With the

1	circulatory nature of miR-21, these findings are consistent with the variations in the distribution of miR-
2	21 among type 1 AIP, CP, and pancreatic cancer. However, it is likely that the magnitude of miR-21
3	expression in the periphery and tissue of type 1 AIP patients is lower than that in those of pancreatic
4	cancer patients ^{33, 49, 50} ; hence we speculate that miR-21 more likely function as a modulator of the Th2
5	balance in type 1 AIP rather than as an oncomiR.
6	The present study reveals that circulating extracellular vesicles of patients with AIP contain high level of
7	miR-21, which might polarize Th2 immune balance. In addition, miR-21 are diffusely expressed in
8	pancreatic tissue especially at inflammatory sites and acinar cells of type 1 AIP. Together, these findings
9	suggest that miR-21 in pancreatic tissue, released to periphery via exosomes, is key pathway of
10	pathophysiology of type 1 AIP.
11	
12	Conflicts of interest
13	The authors have no competing interests to declare.
14	
15	
16	

1 Acknowledgments

2	This study was financially supported by (1) Grant-in-Aid for Young Scientists JSPS KAKENHI Grant
3	Number JP16K19373, (2) Grant-in-Aid for Scientific Research (C) of the Ministry of Culture and Science
4	of Japan (17877850), (3) the Research Program on Intractable Diseases, from the Ministry of Labor and
5	Welfare of Japan, (4) the Research Program from the Japan Medical Research and Development (AMED)
6	(17824893), and (5) Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and
7	Technology of Japan from the CREST Japan Science and Technology Agency. We would like to thank
8	Editage (www.editage.jp) for English language editing. We also thank Ms. Nikki Phipps for support in
9	preparing this article.
10	

1 References

2 1 Théry C, Zitvogel L, Amigorena S: Exosomes: Composition, biogenesis and function. Nat 3 Rev Immunol 2002; 2: 569-579. 4 2 Théry C, Ostrowski M, Segura E: Membrane vesicles as conveyors of immune responses. Nat 5 Rev Immunol 2009; 9: 581-593. 6 3 Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C: Exosomal-like vesicles 7 are present in human blood plasma. Int Immunol 2005; 17: 879-887. 8 4 Pisitkun T, Shen RF, Knepper MA: Identification and proteomic profiling of exosomes in 9 human urine. Proc Natl Acad Sci U S A 2004; 101: 13368-13373. 10 5 Admyre C, Grunewald J, Thyberg J, Gripenbäck S, Tornling G, Eklund A et al.: Exosomes 11 with major histocompatibility complex class ii and co-stimulatory molecules are present in human bal 12 fluid. Eur Respir J 2003; 22: 578-583. 13 6 Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M et al.: Exosomes with 14 immune modulatory features are present in human breast milk. J Immunol 2007; 179: 1969-1978. 15 7 Brouwer R, Vree Egberts WT, Hengstman GJ, Raijmakers R, van Engelen BG, Seelig HP et 16 al.: Autoantibodies directed to novel components of the pm/scl complex, the human exosome. Arthritis 17 Res 2002; 4: 134-138. 18 8 Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN: Salivary gland 19 epithelial cell exosomes: A source of autoantigenic ribonucleoproteins. Arthritis Rheum 2005; 52: 1517-20 1521. 21 9 Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ: Pbmc and exosome-derived hotair is a critical 22 regulator and potent marker for rheumatoid arthritis. Clin Exp Med 2015; 15: 121-126. 23 10 Tomiyama T, Yang GX, Zhao M, Zhang W, Tanaka H, Wang J et al.: The modulation of co-24stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell Mol Immunol 2017; 14: 25 276-284. 26 11 Lee JY, Park JK, Lee EY, Lee EB, Song YW: Circulating exosomes from patients with 27 systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther 2016; 18: 28 264. 29 12 Uchida K, Okazaki K: Clinical and pathophysiological aspects of type 1 autoimmune 30 pancreatitis. J Gastroenterol 2018; 53: 475-483. 31 SARLES H, SARLES JC, MURATORE R, GUIEN C: Chronic inflammatory sclerosis of the 13 32 pancreas--an autonomous pancreatic disease? Am J Dig Dis 1961; 6: 688-698.

1 14 Yoshida K, Toki F, Takeuchi T, Watanabe S, Shiratori K, Hayashi N: Chronic pancreatitis 2 caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci 3 1995; 40: 1561-1568. 4 15 Shimosegawa T, Chari ST, Frulloni L, Kamisawa T, Kawa S, Mino-Kenudson M et al.: 5 International consensus diagnostic criteria for autoimmune pancreatitis: Guidelines of the international 6 association of pancreatology. Pancreas 2011; 40: 352-358. 7 16 Okazaki K, Uchida K, Koyabu M, Miyoshi H, Takaoka M: Recent advances in the concept 8 and diagnosis of autoimmune pancreatitis and igg4-related disease. J Gastroenterol 2011; 46: 277-288. 9 17 Tomiyama T, Uchida K, Matsushita M, Ikeura T, Fukui T, Takaoka M et al.: Comparison of 10 steroid pulse therapy and conventional oral steroid therapy as initial treatment for autoimmune 11 pancreatitis. J Gastroenterol 2011; 46: 696-704. 12 18 Watanabe T, Yamashita K, Fujikawa S, Sakurai T, Kudo M, Shiokawa M et al.: Involvement 13 of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in 14 enhanced igg4 responses in autoimmune pancreatitis. Arthritis Rheum 2012; 64: 914-924. 15 19 Uchida K, Miyoshi H, Ikeura T, Shimatani M, Takaoka M, Okazaki K: Clinical and 16 pathophysiological issues associated with type 1 autoimmune pancreatitis. Clin J Gastroenterol 2016; 9: 17 7-12. 18 20 Fukuhara T, Tomiyama T, Yasuda K, Ueda Y, Ozaki Y, Son Y et al.: Hypermethylation of 19 mst1 in igg4-related autoimmune pancreatitis and rheumatoid arthritis. Biochem Biophys Res Commun 20 2015; 463: 968-974. 21 21 Shimosegawa T, Kataoka K, Kamisawa T, Miyakawa H, Ohara H, Ito T et al.: The revised 22 japanese clinical diagnostic criteria for chronic pancreatitis. J Gastroenterol 2010; 45: 584-591. 23 22 Feng Y, Huang W, Wani M, Yu X, Ashraf M: Ischemic preconditioning potentiates the 24protective effect of stem cells through secretion of exosomes by targeting mecp2 via mir-22. PLoS One 25 2014; 9: e88685. 26 23 Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T: Secretory mechanisms 27 and intercellular transfer of micrornas in living cells. J Biol Chem 2010; 285: 17442-17452. 28 24 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO: Exosome-mediated transfer 29 of mrnas and micrornas is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 30 654-659. 31 25 Kokkinopoulou I, Maratou E, Mitrou P, Boutati E, Sideris DC, Fragoulis EG et al.: Decreased 32 expression of micrornas targeting type-2 diabetes susceptibility genes in peripheral blood of patients and 33 predisposed individuals. Endocrine 2019.

1	26	Li M, Guo Q, Cai H, Wang H, Ma Z, Zhang X: Mir-218 regulates diabetic nephropathy via
2	targeting il	kk-beta and modulating nk-kappab-mediated inflammation. J Cell Physiol 2019.
3	27	Lu Z, Li X, Xu Y, Chen M, Chen W, Chen T et al.: Microrna-17 functions as an oncogene by
4	downregul	ating smad3 expression in hepatocellular carcinoma. Cell Death Dis 2019; 10: 723.
5	28	Wang Y, Zhang P, Yuan M, Li X: Overexpression of mirna-21 promotes the proliferation and
6	invasion in	hepatocellular carcinoma cells via suppressing smad7. Technol Cancer Res Treat 2019; 18:
7	153303381	9878686.
8	29	Dixit AK, Sarver AE, Yuan Z, George J, Barlass U, Cheema H et al.: Comprehensive analysis
9	of microrn	a signature of mouse pancreatic acini: Overexpression of mir-21-3p in acute pancreatitis. Am J
10	Physiol Ga	strointest Liver Physiol 2016; 311: G974-G980.
11	30	Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M et al.: Connective tissue
12	growth fac	tor (ccn2) and microrna-21 are components of a positive feedback loop in pancreatic stellate
13	cells (psc)	during chronic pancreatitis and are exported in psc-derived exosomes. J Cell Commun Signal
14	2014; 8: 14	47-156.
15	31	Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T et al.: Microrna-21 modulates
16	biological	functions of pancreatic cancer cells including their proliferation, invasion, and
17	chemoresis	stance. Mol Cancer Ther 2009; 8: 1067-1074.
18	32	Paik WH, Kim HR, Park JK, Song BJ, Lee SH, Hwang JH: Chemosensitivity induced by
19	down-regu	lation of microrna-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol.
20	Anticancer	· Res 2013; 33: 1473-1481.
21	33	Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP et al.: Microrna
22	expression	patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic
23	pancreatiti	s. JAMA 2007; 297: 1901-1908.
24	34	Chari ST, Kloeppel G, Zhang L, Notohara K, Lerch MM, Shimosegawa T: Histopathologic
25	and clinica	l subtypes of autoimmune pancreatitis: The honolulu consensus document. Pancreatology
26	2010; 10: 6	564-672.
27	35	Okazaki K: Autoimmune pancreatitis and igg4-related disease: The storiform discovery to
28	treatment.	Dig Dis Sci 2019; 64: 2385-2394.
29	36	Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA et al.: Beta cell
30	extracellul	ar vesicle mir-21-5p cargo is increased in response to inflammatory cytokines and serves as a
31	biomarker	of type 1 diabetes. Diabetologia 2018; 61: 1124-1134.
32	37	Miyoshi H, Uchida K, Taniguchi T, Yazumi S, Matsushita M, Takaoka M et al.: Circulating
33	naïve and o	cd4+cd25high regulatory t cells in patients with autoimmune pancreatitis. Pancreas 2008; 36:

1 133-140.

2	38	Zen Y, Fujii T, Harada K, Kawano M, Yamada K, Takahira M et al.: Th2 and regulatory	
3	immune reactions are increased in immunoglobin g4-related sclerosing pancreatitis and cholangitis.		
4	Hepatolog	y 2007; 45: 1538-1546.	
5	39	Sawant DV, Wu H, Kaplan MH, Dent AL: The bcl6 target gene microrna-21 promotes th2	
6	differentiat	tion by a t cell intrinsic pathway. Mol Immunol 2013; 54: 435-442.	
7	40	Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q et al.:	
8	Negative r	egulation of tlr4 via targeting of the proinflammatory tumor suppressor pdcd4 by the microrna	
9	mir-21. Na	at Immunol 2010; 11: 141-147.	
10	41	Murugaiyan G, Garo LP, Weiner HL: Microrna-21, t helper lineage and autoimmunity.	
11	Oncotarget	t 2015; 6: 9644-9645.	
12	42	Hunger RE, Mueller C, Z'graggen K, Friess H, Büchler MW: Cytotoxic cells are activated in	
13	cellular inf	filtrates of alcoholic chronic pancreatitis. Gastroenterology 1997; 112: 1656-1663.	
14	43	Wang Q, Li P, Li A, Jiang W, Wang H, Wang J et al.: Plasma specific mirnas as predictive	
15	biomarkers	s for diagnosis and prognosis of glioma. J Exp Clin Cancer Res 2012; 31: 97.	
16	44	Yang JS, Li BJ, Lu HW, Chen Y, Lu C, Zhu RX et al.: Serum mir-152, mir-148a, mir-148b,	
17	and mir-21	as novel biomarkers in non-small cell lung cancer screening. Tumour Biol 2015; 36: 3035-	
18	3042.		
19	45	Xu J, Wu C, Che X, Wang L, Yu D, Zhang T et al.: Circulating micrornas, mir-21, mir-122,	
20	and mir-22	23, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog 2011; 50: 136-	
21	142.		
22	46	Wang B, Zhang Q: The expression and clinical significance of circulating microrna-21 in	
23	serum of fi	ive solid tumors. J Cancer Res Clin Oncol 2012; 138: 1659-1666.	
24	47	Silvestris N, Danza K, Longo V, Brunetti O, Fucci L, Argentiero A et al.: Angiogenesis in	
25	adenosquamous cancer of pancreas. Oncotarget 2017; 8: 95773-95779.		
26	48	Vychytilova-Faltejskova P, Kiss I, Klusova S, Hlavsa J, Prochazka V, Kala Z et al.: Mir-21,	
27	mir-34a, m	ir-198 and mir-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and	
28	pancreatic	ductal adenocarcinoma. Diagn Pathol 2015; 10: 38.	
29	49	Karamitopoulou E, Haemmig S, Baumgartner U, Schlup C, Wartenberg M, Vassella E:	
30	Microrna d	lysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer.	
31	Mod Patho	ol 2017; 30: 1116-1125.	
32	50	Abue M, Yokoyama M, Shibuya R, Tamai K, Yamaguchi K, Sato I et al.: Circulating mir-483-	
33	3p and mir	-21 is highly expressed in plasma of pancreatic cancer. Int J Oncol 2015; 46: 539-547.	

1	51	Karasek P, Gablo N, Hlavsa J, Kiss I, Vychytilova-Faltejskova P, Hermanova M et al.: Pre-
2	operative	plasma mir-21-5p is a sensitive biomarker and independent prognostic factor in patients with
3	pancreatic	ductal adenocarcinoma undergoing surgical resection. Cancer Genomics Proteomics 2018; 15:
4	321-327.	
5	52	Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H et al.: The serum mir-21 level serves as a
6	predictor	for the chemosensitivity of advanced pancreatic cancer, and mir-21 expression confers
7	chemoresi	stance by targeting fasl. Mol Oncol 2013; 7: 334-345.
8	53	Melnik BC: Mir-21: An environmental driver of malignant melanoma? J Transl Med 2015;
9	13: 202.	
10	54	Malka D, Hammel P, Maire F, Rufat P, Madeira I, Pessione F et al.: Risk of pancreatic
11	adenocarc	inoma in chronic pancreatitis. Gut 2002; 51: 849-852.
12	55	Shiokawa M, Kodama Y, Yoshimura K, Kawanami C, Mimura J, Yamashita Y et al.: Risk of
13	cancer in j	patients with autoimmune pancreatitis. Am J Gastroenterol 2013; 108: 610-617.
14	56	Ikeura T, Miyoshi H, Shimatani M, Uchida K, Takaoka M, Okazaki K: Long-term outcomes
15	of autoim	nune pancreatitis. World J Gastroenterol 2016; 22: 7760-7766.
16		

2	
3	Fig. 1. Immunoblotting of extracellular vesicle markers in the circulating EVs from HCs and type 1
4	AIP patients.
5	Circulating EVs collected from type 1 AIP and CP patients and HCs were analyzed by western blotting
6	with representative EV markers including CD81 (top), CD63 (upper-middle) and CD63 (lower-middle)
7	and negative marker including GM130 (bottom). These findings verified that circulating EVs have
8	exosome-like character.
9	
10	Fig. 2 Scatter plot of microRNA microarray for AIP patients and HCs.
11	Scatter plot shows the 3-fold upregulated and downregulated microRNAs (the upper and lower dots
12	compared with the linear border, respectively) in type 1 AIP patients compared to those in HCs.
13	,
14	Fig. 3. Quantification of microRNA in circulating EVs by RT-PCR.
15	Ratio of miRNA expression to Cel-miR-39 expression is shown for each miRNA selected from the result
16	of microarray analysis in AIPs (n=10), CPs (n=10) and HCs (n=10). Data are expressed as the mean \pm
17	SEM. Significant difference was found between AIPs and HCs in miR-21-5p (P=0.04).
18	
19	
20	Fig. 4. miR-21 expression determined by in situ hybridization of pancreatic tissues in HCs, CP, and
21	type 1 AIP. In situ hybridization of miR-21 in (A) pancreatic duct, (B) acinar cells, and (C) H &E
22	staining of type 1 AIP and CP . Bars indicate 50 μ m, Note the positive hybridization in the pancreatic
23	duct (A) and acinar cells (B) and presence of inflammatory sites with fibrosis (C) . H&E staining of type
24	1 AIP and CP indicates the enormous inflammatory cells in type 1 AIP (C). The number of inflammatory
25	cells expressed miR-21 in each inflammatory site of type 1 AIP and CP (D) are shown as mean ±SD.
26	Data were obtained from 3 independent experiments.
27	
28	

1 Table 1 Clinical features

	AIP (n=23)	CP (n=23)	HC (n=23)
Age (range)	63.0 (49-80)	63.0 (50-81)	61.0 (33-83)
Gender (Female/Male)	4/19	8/15	10/13
Pancreatic swelling (Diffuse/Focal)	6/17	-	-
Other organ involvement (Sialoadenitis/Retroperitoneal fibrosis/None)	7/2/14	-	-
Serum IgG4 level (mg/dl, range)	584.5(32-1490)	-	-

		Ratio		
miRNA	AIP vs. HC	AIP vs. CP	CP vs. HC	
upregulated				
hsa-miR-659-3p	13.04	27.10	N/A	
hsa-miR-27a-3p	4.96	2.98	1.78	
hsa-miR-99a-5p	4.37	11.49	0.15	
hsa-miR-21-5p	3.57	3.66	0.66	
hsa-miR-205-5p	3.46	4.27	0.35	
hsa-miR-100-5p	3.23	N/A	0.16	
hsa-miR-29c-3p	3.04	3.35	N/A	
hsa-miR-125b-1-3p	3.00	2.37	N/A	
downregulated				
hsa-miR-4252	0.17	N/A	0.10	
hsa-miR-5004-5p	0.33	0.50	N/A	

Table 2. The ratio of 10 miRNAs in Table 2 in comparison among AIPs (n = 10), CPs (n = 10), and HCs
 (n = 10).

N/A; not available

1 Table 3. miR-21 positive cells at pancreatic ducts and acinar cells

		AIP			СР			НС			
	1	2	3	1	2	3	•	1	2	3	
Pancreatic duct	+++	+	+++	++	+++	-		+++	++	+++	
Acinar cell	+++	+	+++	+++	+++	-		-	+	-	

2 MiR-21 positive sites: -, 0/9sites; +, 1-3/9sites; ++, 4-6/9sites; +++, 7-9/9sites